$$\begin{eqnarray}
F_{drag} &=& \frac{1}{2} \cdot c \cdot D \cdot A \cdot v^2 \\
\\
P &=& F \cdot v \\
&=&\frac{1}{2} \cdot c \cdot D \cdot A \cdot v^3 \\
\\
v &=& \left(\frac{2 \cdot P }{c \cdot D \cdot A}\right)^{\frac{1}{3}} \\
&=& \left(\frac{2 \cdot 65000 }{ 0.34 \cdot 1.25 \cdot 2.159}\right)^{\frac{1}{3}} \\
&=& 52.13\,m/s \\
&=& 187.67\,km/h \\
\end{eqnarray}$$
|
- does not account for drag from rolling resistace; at maximum speed, air resistance dominates
- does not account for drivetrain losses (power at the wheels)
- something closer to 175 km/h is probably a more realistic estimate of maximum speed (assuming the above factors are equivalent to a 20% drop in power)
|